1. Product
Collagen Reagens HORM® Suspension (KRH)
2. Manufacturer
Takeda production site in Linz, Austria, holder of EN ISO 13485:2016+AC:2009 certifications for Medical Devices.
3. Categorisation of therapeutical area
Collagen Reagens HORM® can be categorized as a diagnostic product widely used in haematological laboratories and/or blood preservation institutions. It is a suspension of native collagen fibrils acting as inductor of platelet aggregation.
Blood coagulation is a highly complex and sophisticated system to maintain vascular integrity. In case of injuries, platelet adhesion to vessel wall collagen plays a fundamental role in initiating complex interactions that in the end lead to formation of platelet aggregates. These can be considered a “peg” that consequently tightens the injured vessel.
4. Description of product
Collagen Reagens HORM® is a suspension of native equine tendon collagen (type I). It is classified an in-vitro diagnostic medical device used for the determination of platelet aggregation capacity. Collagen fibrils act as an inductor of platelet aggregation - the product may therefore be used to
5. Advantages and characteristics:
6. Packaging sizes
KRH is available as
7. Instructions for Use (03.2013)
8. Distribution/Contact/ /Questions
Mrs. Sandra Hutter
Takeda Austria GmbH
A-4020 Linz
St. Peter Strasse 25
Austria/Europe
Tel: +43 732 6919 4819
Email: [email protected]
9. Frequently Asked Questions
Q: How is the adjustment of a pH-value between 2,7-2,9 done for the isotonic glucose solution (SKF solution)?
A: The adjustment is done with lactic acid.
Q: Do you have any antibody that reacts well with Collagen Reagens Horm?
A: No
Q: What are the dimensions of the standard box?
A: Collagen Reagens Horm, Takeda ref: 1130630 (1 vial collagen + 4 ampoules SKF solution) packed in polystyrol: 12 x 13,5 x 5 cm. Weight of the standard box: 109 grams
Q: What is the origin of Collagen Reagens Horm?
A: Country of origin is Austria.
Q: What type of collagen is Collagen Reagens Horm?
A: Collagen Reagens Horm is produced from equine tendons. The predominant collagen in tendons is Type I. We do not test our Collagen Reagens Horm batches specifically for their compositions of collagen types. As it is known from literature Collagen Reagens Horm contains a mixture of approximately 95% Collagen Type I and 5% Collagen Type III. (see literature reference Nr. 10: Favaloro E.J; Thromb. Haemost. 2000; 83: 127-135)
Q: What is the recommended shipping temperature?
A: Shipping temperature = storage temperature: + 2 to + 8 °C.
Q: Details of any temperature cycle assessments, i.e. permitted number of excursions from the specified shipping / storage temperature?
A: Maximum allowable cumulative time of temperature excursion +8 to + 25 °C = 1 day. No excursions below + 2°C allowed.
10. Comprehensive Literature
1. Born GV , Cross MJ . The aggregation of blood platelets. J Physiol. 1963 Aug;168:178-95.
2. Marx R, Schulte F. Über einen klinischen Schnelltest zur Erfassung von hereditären und erworbenen Thrombopathien. Blut.1972 Mar;24(3):137-41.
3. Cardinal DC , Flower RJ. The electronic aggregometer: a novel device for assessing platelet behavior in blood. J Pharmacol Methods. 1980 Feb;3(2):135-58.
4. Katthagen BD, Hellstern P. [In vitro studies on the effect of dissolved and undissolved heterologous collagen sponge on human thrombocytes] Z Orthop Ihre Grenzgeb. 1984 Sep-Oct;122(5):677-81.
5. Riess H, Braun G, Brehm G, Hiller E. Critical evaluation of platelet aggregation in whole human blood. Am J Clin Pathol. 1986 Jan;85(1):50-6.
6. Adelmann-Grill BC , Otto K . Immunological safety evaluation of a haemostatic agent and wound dressing made of horse collagen fibrils. Arzneimittelforschung. 1987 Jul;37(7):802-5.
7. Morton LF, Hargreaves PG, Farndale RW, Young RD, Barnes MJ. Integrin alpha 2 beta 1-independent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for alpha 2 beta 1-independent platelet reactivity. Biochem J. 1995 Mar 1;306 ( Pt 2):337-44 .
8. Hathaway WE, Goodnight SH. Disorders of Hemostasis and Thrombosis: A Clinical Guide. 2nd ed., McGraw-Hill. 2000
9. Siljander PR . Platelet-collagen interaction and microvesiculation, Academic dissertation, Faculty of Science of the University of Helsinki. 2000
10. Favaloro EJ. Collagen binding assay for von Willebrand factor (VWF:CBA): detection of von Willebrands Disease (VWD), and discrimination of VWD subtypes, depends on collagen source. Thromb Haemost . 2000 Jan;83(1):127-35.
11. Favaloro EJ. Detection of von Willebrand disorder and identification of qualitative von Willebrand factor defects. Direct comparison of commercial ELISA-based von Willebrand factor activity options. Am J Clin Pathol. 2000 Oct;114(4):608-18.
12. Jarvis GE, Atkinson BT, Snell DC, Watson SP. Distinct roles of GPVI and integrin alpha(2)beta(1) in platelet shape change and aggregation induced by different collagens. Br J Pharmacol. 2002 Sep;137(1):107-17.
13. Paczuski R. Determination of von Willebrand factor activity with collagen-binding assay and diagnosis of von Willebrand disease: effect of collagen source and coating conditions. J Lab Clin Med . 2002 Oct;140(4):250-4.
14. Nieswandt B, Watson SP. Platelet-collagen interaction: is GPVI the central receptor? Blood. 2003 Jul 15;102(2):449-61.
15. Breddin HK. Can platelet aggregometry be standardized? Platelets. 2005 May-Jun;16(3-4):151-8. Review.
16. Favaloro EJ. An update on the von Willebrand factor collagen binding assay: 21 years of age and beyond adolescence but not yet a mature adult. Semin Thromb Hemost. 2007 Nov;33(8):727-44. Review.
17. Smethurst PA, Onley DJ, Jarvis GE, O'Connor MN, Knight CG, Herr AB, Ouwehand WH, Farndale RW. Structural basis for the platelet-collagen interaction: the smallest motif within collagen that recognizes and activates platelet Glycoprotein VI contains two glycine-proline-hydroxyproline triplets. J Biol Chem. 2007 Jan 12;282(2):1296-304
Jänner 2018; AT/OTH/0517/0006